<< Chapter < Page Chapter >> Page >
Representation of continuous time, periodic signals in the frequency domain. Periodic signals occur frequently — motion of planets and their satellites, vibration of oscillators, electric power distribution, beating of the heart, vibration of vocal chords, etc.

Lecture #7:

CONTINUOUS TIME FOURIER SERIES FOR PERIODIC SIGNALS

Motivation:

  • Representation of continuous time, periodic signals in the frequency domain
  • Periodic signals occur frequently — motion of planets and their satellites, vibration of oscillators, electric power distribution, beating of the heart, vibration of vocal chords, etc.

Outline:

  • Fourier series of periodic functions
  • Examples of Fourier series — periodic impulse train
  • Fourier transforms of periodic functions — relation to Fourier series
  • Conclusions

I. FOURIER SERIES OF A PERIODIC FUNCTION

1/ Periodic time function

x(t) is a periodic time function with period T.

Such a periodic function can be expanded in an infinite series of exponential time functions called the Fourier series,

x ( t ) = n = X [ n ] e j2π nt / T size 12{x \( t \) = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {X \[ n \] e rSup { size 8{j2π ital "nt"/T} } } } {}

2/ Fourier series coefficients

The coefficients of the Fourier series can be found as follows.

1 T T / 2 T / 2 x ( t ) e j2π nt / T dt = 1 T T / 2 T / 2 ( k = X [ k ] e j2π kt / T ) e j2π nt / T dt size 12{ { {1} over {T} } Int rSub { size 8{ - T/2} } rSup { size 8{T/2} } {x \( t \) e rSup { size 8{ - j2π ital "nt"/T} } } ital "dt"= { {1} over {T} } Int rSub { size 8{ - T/2} } rSup { size 8{T/2} } {} \( Sum cSub { size 8{k= - infinity } } cSup { size 8{ infinity } } {X \[ k \] e rSup { size 8{j2π ital "kt"/T} } } \) e rSup { size 8{ - j2π ital "nt"/T} } ital "dt"} {}

1 T T / 2 T / 2 x ( t ) e j2π nt / T dt = k = X [ k ] 1 T T / 2 T / 2 e j2π ( k n ) t / T dt size 12{ { {1} over {T} } Int rSub { size 8{ - T/2} } rSup { size 8{T/2} } {x \( t \) e rSup { size 8{ - j2π ital "nt"/T} } } ital "dt"= Sum cSub { size 8{k= - infinity } } cSup { size 8{ infinity } } {X \[ k \] } { {1} over {T} } Int rSub { size 8{ - T/2} } rSup { size 8{T/2} } {e rSup { size 8{j2π \( k - n \) t/T} } } ital "dt"} {}

The integral can be evaluated as follows.

1 ifk = n 0 ifk n 1 T T / 2 T / 2 e j2π ( k n ) t / T dt = { size 12{ { {1} over {T} } Int rSub { size 8{ - T/2} } rSup { size 8{T/2} } {e rSup { size 8{j2π \( k - n \) t/T} } } ital "dt"=alignl { stack { left lbrace 1 ital "ifk"=n {} #right none left lbrace 0 ital "ifk"<>n {} # right no } } lbrace } {}

The set of exponential time functions are said to be an orthonormal basis.

The coefficients are

X [ n ) = 1 T T / 2 T / 2 x ( t ) e j2π nt / T dt size 12{X \[ n \) = { {1} over {T} } Int rSub { size 8{ - T/2} } rSup { size 8{T/2} } {x \( t \) } e rSup { size 8{ - j2π ital "nt"/T} } ital "dt"} {}

3/ Definition of line spectra, harmonics

The fundamental frequency fo = 1/T . The Fourier series coefficients plotted as a function of n or nfo is called a Fourier spectrum.

II. EXAMPLES OF FOURIER SERIES OF PERIODIC TIME FUNCTIONS

1/ Periodic impulse train

The periodic impulse train is an important periodic time function and we derive its Fourier series coefficients.

s ( t ) = n = δ ( t nT ) size 12{s \( t \) = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {δ \( t - ital "nT" \) } } {}

The Fourier series coefficients are found as follows

S [ n ] = 1 T T / 2 T / 2 s ( t ) e j2π nt / T dt , 1 T T / 2 T / 2 n = δ ( t nT ) e j2π nt / T dt , 1 T T / 2 T / 2 δ ( t ) e j2π nt / T dt = 1 T alignl { stack { size 12{S \[ n \]= { {1} over {T} } Int rSub { size 8{ - T/2} } rSup { size 8{T/2} } {s \( t \) e rSup { size 8{ - j2π ital "nt"/T} } } ital "dt",} {} # = { {1} over {T} } Int rSub { size 8{ - T/2} } rSup { size 8{T/2} } { Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {δ} } \( t - ital "nT" \) e rSup { size 8{ - j2π ital "nt"/T} } ital "dt", {} #= { {1} over {T} } Int rSub { size 8{ - T/2} } rSup { size 8{T/2} } {δ \( t \) e rSup { size 8{ - j2π ital "nt"/T} } } ital "dt"= { {1} over {T} } {} } } {}

The Fourier series coefficients are

S [ n ] = 1 T size 12{S \[ n \] = { {1} over {T} } } {}

The time function and spectrum are shown below.

To summarize, the periodic impulse train can be represented by its Fourier series,

s ( t ) = n = δ ( t nT ) = 1 T n = e j2π nt / T size 12{s \( t \) = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {δ \( t - ital "nT" \) = { {1} over {T} } } Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {e rSup { size 8{j2π ital "nt"/T} } } } {}

The Fourier series of the periodic impulse train is

s ( t ) = n = δ ( t nT ) = 1 T n = e j2π nt / T size 12{s \( t \) = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {δ \( t - ital "nT" \) = { {1} over {T} } } Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {e rSup { size 8{j2π ital "nt"/T} } } } {}

It is not obvious that the two expressions are equal. To investigate this, we define the partial sum of the Fourier series, sN(t),

s N ( t ) = 1 T n = N N e j2π nt / T size 12{s rSub { size 8{N} } \( t \) = { {1} over {T} } Sum cSub { size 8{n= - N} } cSup { size 8{N} } {e rSup { size 8{j2π ital "nt"/T} } } } {}

and investigate its behavior as N →∞.

The partial sum of the Fourier series is

S N ( t ) = 1 T n = N N e j2π nt / T = 1 T n = N N ( e j2πt / T ) n size 12{S rSub { size 8{N} } \( t \) = { {1} over {T} } Sum cSub { size 8{n= - N} } cSup { size 8{N} } {e rSup { size 8{j2π ital "nt"/T} } } = { {1} over {T} } Sum cSub { size 8{n= - N} } cSup { size 8{N} } { \( e rSup { size 8{j2πt/T} } } \) rSup { size 8{n} } } {}

We can use the summation formula for a finite geometric series (Lecture 10) to sum this series,

s N ( t ) = 1 T ( e j2πt / T ) N ( e j2πt / T ) N + 1 1 e j2πt / T size 12{s rSub { size 8{N} } \( t \) = { {1} over {T} } { { \( e rSup { size 8{j2πt/T} } \) rSup { size 8{ - N} } - \( e rSup { size 8{j2πt/T} } \) rSup { size 8{N+1} } } over {1 - e rSup { size 8{j2πt/T} } } } } {}

s N ( t ) = 1 T e j ( 2N + 1 ) πt / T e j ( 2N + 1 ) πt / T e jπt / T e jπt / T size 12{s rSub { size 8{N} } \( t \) = { {1} over {T} } { {e rSup { size 8{j \( 2N+1 \) πt/T} } - e rSup { size 8{ - j \( 2N+1 \) πt/T} } } over {e rSup { size 8{jπt/T} } - e rSup { size 8{ - jπt/T} } } } } {}

s N ( t ) = 1 T sin ( 2N + 1 ) πt / T sin πt / T size 12{s rSub { size 8{N} } \( t \) = { {1} over {T} } { {"sin" \( 2N+1 \) πt/T} over {"sin"πt/T} } } {}

s N ( t ) = 1 T sin ( 2N + 1 ) πt / T sin πt / T size 12{s rSub { size 8{N} } \( t \) = { {1} over {T} } { {"sin" \( 2N+1 \) πt/T} over {"sin"πt/T} } } {}

Note that this function is periodic with period T, and

s N ( t ) = 2N + 1 T size 12{s rSub { size 8{N} } \( t \) = { {2N+1} over {T} } } {}

The first zero of sN(t) is at

t = T 2N + 1 size 12{t= { {T} over {2N+1} } } {}

Thus, as N → ∞, each lobe gets larger and narrower. To determine if each lobe acts as an impulse, we need to find its area.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10803/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask