<< Chapter < Page Chapter >> Page >

The area of each period of sN(t) is simply

Area = T / 2 T / 2 S N ( t ) dt = T / 2 T / 2 1 T n = N N e j2π nt / T dt = n = N N 1 T T / 2 T / 2 e j2π nt / T dt size 12{ ital "Area"= Int rSub { size 8{ - T/2} } rSup { size 8{T/2} } {S rSub { size 8{N} } \( t \) ital "dt"= Int rSub { size 8{ - T/2} } rSup { size 8{T/2} } { { {1} over {T} } } } Sum cSub { size 8{n= - N} } cSup { size 8{N} } {e rSup { size 8{j2π ital "nt"/T} } } ital "dt"= Sum cSub { size 8{n= - N} } cSup { size 8{N} } { { {1} over {T} } } Int rSub { size 8{ - T/2} } rSup { size 8{T/2} } {e rSup { size 8{j2π ital "nt"/T} } } ital "dt"} {}

The integral is zero except when n = 0 when it equals T so that Area = 1. Thus, each lobe of sN(t) becomes: tall, height is sN(nT) = (2N + 1)/T ; narrow, width is 2T/(2N + 1); and its area is 1. Thus, the partial sum approaches an infinite impulse train of unit area,

s ( t ) = n = δ ( t nT ) = 1 T n = e j2π nt / T size 12{s \( t \) = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {δ \( t - ital "nT" \) = { {1} over {T} } } Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {e rSup { size 8{j2π ital "nt"/T} } } } {}

2/ Fourier transform of a periodic impulse train

We have two expressions for a periodic impulse train,

s ( t ) = n = δ ( t nT ) = 1 T n = e j2π nt / T size 12{s \( t \) = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {δ \( t - ital "nT" \) = { {1} over {T} } } Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {e rSup { size 8{j2π ital "nt"/T} } } } {}

The Fourier transform of each expression is

S ( f ) = n = e j2π nTf = 1 T n = δ ( f n T ) size 12{S \( f \) = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {e rSup { size 8{ - j2π ital "nTf"} } } = { {1} over {T} } Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {δ \( f - { {n} over {T} } } \) } {}

Therefore, the Fourier transform of a periodic impulse train in time is a periodic impulse train in frequency.

3/ Relation of Fourier series spectrum to Fourier transform of a periodic impulse train

Therefore, the Fourier transform of the periodic impulse train has an impulse at the frequency of each Fourier series component and the area of the impulse equals the Fourier series coefficient.

III. FOURIER TRANSFORM OF AN ARBITRARY PERIODIC FUNCTION

1/ Representation of a periodic function

An arbitrary periodic function can be generated by convolving a pulse, xT (t), that represents one period of the periodic function with a periodic impulse train, s ( t ) = n δ ( t nT ) size 12{s \( t \) = Sum rSub { size 8{n} } {δ \( t - ital "nT" \) } } {}

x ( t ) = x T ( t ) s ( t ) = x T ( t ) n = δ ( t nT ) = n = x T ( t nT ) size 12{x \( t \) =x rSub { size 8{T} } \( t \) * s \( t \) =x rSub { size 8{T} } \( t \) * Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {δ \( t - ital "nT" \) = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {x rSub { size 8{T} } } \( t - ital "nT" \) } } {}

2/ Fourier transform of a periodic function

The Fourier transform of the periodic function is

x ( t ) = x T ( t ) s ( t ) F X ( f ) = X T ( f ) × S ( f ) size 12{x \( t \) =x rSub { size 8{T} } \( t \) * s \( t \) { dlrarrow } cSup { size 8{F} } X \( f \) =X rSub { size 8{T} } \( f \) times S \( f \) } {}

X ( f ) = X T ( f ) × 1 T n = δ ( f n T ) = n = ( X T ( n T ) T ) δ ( f n T ) size 12{X \( f \) =X rSub { size 8{T} } \( f \) times { {1} over {T} } Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {δ \( f - { {n} over {T} } } \) = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } { \( { {X rSub { size 8{T} } \( { {n} over {T} } \) } over {T} } \) } δ \( f - { {n} over {T} } \) } {}

An important conclusion is that the Fourier transform of a periodic function consists of impulses in frequency at multiples of the fundamental frequency. Thus, periodic continuous time functions can be represented by a countably infinite number of complex exponentials.

3/ Fourier series coefficients

The Fourier transform of the periodic function is

X f = n = ( X T ( n T ) T ) δ ( f n T ) = n = 1 2 ( sin / 2 / 2 ) δ ( f n T ) size 12{X left (f right )= Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } { \( { {X"" lSub { size 8{T} } \( { {n} over {T} } \) } over {T} } \) δ \( f - { {n} over {T} } \) } = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } { { {1} over {2} } \( { {"sin" left (nπ/2 right )} over {nπ/2} } \) δ \( f - { {n} over {T} } \) } } {}

Recall that

X T ( f ) = T / 2 T / 2 X T ( t ) e j2π ft dt size 12{X"" lSub { size 8{T} } \( f \) = Int rSub { size 8{ - T/2} } rSup { size 8{T/2} } {X rSub { size 8{T} } } \( t \) e rSup { size 8{ - j2π ital "ft"} } ital "dt"} {}

Therefore,

X T ( n T ) T = 1 T T / 2 T / 2 X T ( t ) e j2π ft dt = X [ n ] size 12{ { {X rSub { size 8{T} } \( { {n} over {T} } \) } over {T} } = { {1} over {T} } Int rSub { size 8{ - T/2} } rSup { size 8{T/2} } {X rSub { size 8{T} } } \( t \) e rSup { size 8{ - j2π ital "ft"} } ital "dt"=X \[ n \] } {}

Therefore, for an arbitrary periodic continuous time function, the Fourier transform consists of impulses (located at the harmonic frequencies) whose areas are the Fourier series coefficients.

4/ Fourier series of a square wave — generation of the square wave

We will find the Fourier series of a square wave by finding the Fourier transform of one period.

x ( t ) = x T ( t ) s ( t ) size 12{x \( t \) =x rSub { size 8{T} } \( t \) * s \( t \) } {}

5/ Fourier series of a square wave — Fourier transform of one period of the square wave

x T ( t ) F X T ( f ) size 12{x rSub { size 8{T} } \( t \) { dlrarrow } cSup { size 8{F} } X rSub { size 8{T} } \( f \) } {}

6/ Fourier series of a square wave — Fourier transform of square wave

To obtain the Fourier transform of the square wave, we take the Fourier transform of one period of the square wave and multiply it by the Fourier transform of the periodic impulse train.

X ( f ) = X T ( f ) × S ( f ) = T 2 ( sin π fT / 2 π fT / 2 ) × 1 T n = δ ( f n T ) = n = 1 2 ( sin / 2 / 2 ) δ ( f n T ) size 12{X \( f \) =X rSub { size 8{T} } \( f \) times S \( f \) = { {T} over {2} } \( { {"sin" left (π ital "fT"/2 right )} over {π ital "fT"/2} } \) times { {1} over {T} } Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {δ \( f - { {n} over {T} } \) } = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } { { {1} over {2} } \( { {"sin" left (nπ/2 right )} over {nπ/2} } \) δ \( f - { {n} over {T} } \) } } {}

Two-minute miniquiz problem

Problem 18-1 — Fourier series of the square wave

a) Determine the Fourier series coefficients of the square wave.

b) From the Fourier series coefficients determine the average value of the square wave.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10803/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask