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Signals and Systems 
 

Solutions to Homework Assignment # 10 

 
Problem 1. (O&W Problem 8.26) 

The system in question illustrate show some of the basic trigonometric identities have very 
interesting consequences when creatively applied to a communication system. We will start 
our analysis at the system input, where we have a constant but unknown phase Θc and an 
input of  

y(t) = [x(t) + A]cos(ωct+Θc) 

Denote the intermediate signals in the system as shown below. 

 

And now we crunch through the algebra... 

y1(t) = [x(t) + A]cos(ωct+Θc)cos(ωct) 

y1(t) = [x(t) + A][ ½ cosΘc + ½ cos(2ωct+Θc)] 

y1(t) = [x(t) + A] × ½ cosΘc  + [x(t) + A] × cos(2ωct+Θc) 

Since our lowpass filter removes all spectral components with radial frequency ω > ωc, the 
second term in the final expression for y1(t) will be removed. This leaves us with (after 
lowpass filtering)  

y3(t) = [x(t) + A]× ½ cosΘc  

And gives the immediate result of 

y5(t) = [x(t) + A]
2 

× ¼ cos
2 
Θc 

We proceed in a very similar manner for the lower half of our system, except we find that the 
first term in the expression for y2(t) is now removed by the LPF. 

y2(t) = [x(t) + A] × ½ sin(2ωct+Θc) − [x(t) + A] × ½ sinΘc 
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y4(t) = −[x(t) + A]× ½ sinΘc 

y6(t) = [x(t) + A]
2 

× ¼ sin2 
Θc  

The rest of the system is quite straightforward, as we have 

y7(t) = ¼ [x(t) + A]
2 
× (cos

2
Θc + sin

2
Θc) 

y7(t) = ¼ [x(t) + A]
2 
 

r(t) = ½ [x(t) + A] 

From which x(t) can be recovered by amplification by a factor of 2 and then using normal 
envelope detection. 
 

Problem 2. O&W 8.27  

(a) We have x(t) = cosωMt, so X(jω) = π(δ(ω−ωM) + δ(ω+ωM)): 

 
Let z(t) = A + x(t). Then, Z(jω) = X(jω) + 2πAδ(ω): 

 

Let c(t) = cos(ωct+θc). Thus, C(jω) = π(e
jθc δ(ω−ωM) + e

−jθc δ(ω+ωM)): 
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We have y(t) = z(t)c(t), so Y(jω) = (½π) Z(jω)*C(jω): 

 

Since y(t) is periodic, we can express it in terms of its Fourier series coefficients ak. We know 
y(t) is real, so y(t) = |y(t)|. Thus, by Parseval’s relation, 

 

The formula for translating the Fourier series coefficients ak of a periodic signal y(t) into its 
Fourier transform Y(jω) is 

 

where ω0 is the fundamental frequency. Hence, we can find the Fourier series coefficients ak 

by taking the area of each impulse and dividing by 2π. 
(Sidenote: y(t) is periodic if and only if the frequencies at which the impulses occur in the 
Fourier transform are harmonically related. In other words, there must exist a real number ω0 
and integers kc and kM such that 

ωc = kcω0 

ωM = kMω0. 

This is the condition we need to discretize the frequency axis from the Fourier transform to 
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the Fourier series representations. However, the problem assumed that y(t) was periodic, so 
we can convert its Fourier transform to the Fourier series coefficients as done above.) 

Thus, the contribution of each sideband impulse to the power is 

 
Likewise, the contribution of each “A” impulse to the power is 

  
So, 
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The maximum value of |x(t)| is 1, so the modulation index is m = 1/A. 

Plugging m = 1/A ⇒ A = 1/m
 
into Eq.1 produces 

 

 
(b) The effciency is 

 
 

Substituting in A = 1/m
 
into Eq.2 produces 

  
The MATLAB code that produced the graphs in parts b and d is: 

% part a 
% graph P_y as function of A and m 
m = [.1:.001:10]; A = 1./m; P_y = 1/4 + 1./(2*m.^2); close all; 
figure; plot(A, P_y); grid on; xlabel(’A’); ylabel(’P_{y}’); 
figure; plot(m, P_y); axis([0, 10, 0, 20]); grid on; xlabel(’m’); 
ylabel(’P_{y}’); 
 
% part b 



 6

% graph efficiency as function of m 
eff = (m.^2)./(m.^2 + 2); figure; plot(m, eff); grid on; 
xlabel(’modulation index m’); ylabel(’efficiency \epsilon’); 
 

Problem 3. (O&W 8.34)  

Looking at Figure P8.34 on page 640 of O&W, we’ll name a new variable, z(t), that is the 
signal between the square-law device and bandpass filter, H(jω). 

z(t) = (x(t) + cos(ωct))
2 
= x2(t) + 2x(t)cos(ωct) + cos2(ωct) 

Z(jω) = (1/2π)X(jω)*X(jω) + [X(j(ω+ωc)) + X(j(ω−ωc))] 

 + 1/2[δ(ω+2ωc) + δ(ω−2ωc)] + δ(ω) 

Since X(jω) is band limited, X(jω) = 0 |ω| > ωM, the convolution of X(jω) with itself is also 
band limited (X(jω) = X(jω) = 0 |ω| > 2ωM). With that said, we are safe to pull out 
x(t)cos(ωct) with a bandpass filter given in H(jω). Consider an arbitrary function X(jω) 
sketched below: 

  

and the spectrum of the output of the square-law device, Z(jω), is sketched below. To make 
sure that H(jω) doesn’t have any of the signal from X(jω)*X(jω) in the passband, we have 
2ωM < ωc−ωM. Therefore, we can see the range of values for ωl and ωh in the sketch below. 

2ωM < ωl <ωc − ωM  

ωc + ωM < ωh < 2ωc  

Our goal is to have x(t)cos(ωct) come out of the bandpass filter; however, the amplitude is off 
by a factor of ½ (see figure below), thus A has to be equal to ½, since the Fourier transform of 
x(t)cos(ωct) is: 

FT{x(t)cos(ωct)} = ½ [X(j(ω+ωc)) + X(j(ω−ωc))] 

 

Problem 4. O&W Problem 8.47 
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This problem illustrates the detrimental effects of losing phase synchronization between the 
transmitter and receiver in a digital system. To gain insight for this problem, let’s look at the 
following: 

y[n] = x[n]cos[ωcn + Θc] 

w[n] = y[n]cos[ωdn + Θd] 

   = x[n]cos[ωcn + Θc]cos[ωdn + Θd] 

One way to solve this problem is using Euler’s relation (note that you can also do this using 
trigonometric identities as well): 

  

Which simplifies to:  

 

Notice that by combining these exponential terms, we get: 

 

Which simplifies to:  

  
where ∆ω = ωc−ωd and ∆Θ = Θc−Θd. Notice that by doing this algebra first, we can use it for 
the rest of the problem. 

(a) If we assume ∆ω =0, then ωc = ωd and we can simplify w[n] to the following: 

w[n] = x[n][ ½ cos[2ωcn+(Θc+Θd)] + ½ cos[∆Θ]] 

From this equation, we can plot the magnitude and phase of W(e
jω

):  
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 (b) Again, if ∆ω = 0, then w[n] will be the same as in part (a). If we pick w = ωM, then:  

r[n] = x[n]cos[∆Θ] 
But, notice that if ∆Θ = π/2, then since cos(π/2) = 0, then r[n] = 0! This is a very 
interesting result! We see that a phase offset between the transmitter and receiver creates 
an interferometric effect at the receiver output, with the amplitude of r[n] depending 
directly on the phase mismatch ∆Θ. Clearly this is not desirable, which leads to the 
requirement for a complex receiver to maintain phase coherence in such a system. 

(c) Here we have the situation where there is no phase difference between the transmitter and 
receiver but there is instead a frequency offset ∆ω. If ∆Θ = 0, then Θc = Θd and w[n] will 
simplify to the following: 

w[n] = x[n][ ½ cos[(ωc+ωd)n + 2Θc] + ½ cos[∆ωn]] 

If we let w = ωM + ∆ω, then: 
r[n] = x[n]cos[∆ωn] 

We see the same interesting result here as in part (b), except this time the interferometric 
relationship is governed by ∆ωn instead of ∆Θ. 

Problem 5. O&W Problem 8.48 

(a) Since p[n] is periodic, we can use the DT Fourier Series analysis equation to find the 
general form for ak and then use the relationship that  
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Note: You can also use Tables 5.1 and 5.2 on pp391-392 to find this result. Therefore: 

 

For N = 4, M = 1, P(e
jω

) will look like: 

 
 

(b) Let ωM = π/2N
 
. Since M = 1, then: 
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Since 2.π/2N = π/N < 2π/N 
 

(no aliasing) and Y(e
jω

) = 1/2π
 
X(e

jω
)*P(e

jω
), then:  

 

For N = 4, Y(e
jω

) will look like: 

 

(c) For this problem, we are given: 

 

where X(e
jω

) repeats every 2π. In order to make sure that there is no aliasing: 

2ωM < ωs = 2π/N 

  Therefore, ωM < π/N
  

where N ∈ Z
+
. Notice that this calculation does not depend on M. 

(d) To get back the original signal, we need to low-pass filter y[n]: 

 
 


