Signals and Systems
Solutions to Homework Assignment # 10

Problem 1. (O&W Problem 8.26)

The system in question illustrate show some of the basic trigonometric identities have very
interesting consequences when creatively applied to a communication system. We will start
our analysis at the system input, where we have a constant but unknown phase @, and an
input of

W(t) = [x(f) + A]cos(w t+6,)
Denote the intermediate signals in the system as shown below.
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And now we crunch through the algebra...
y1(%) = [x(¢) + A]cos(wct+Oc)cos(wct)
y1(t) = [x(2) + A][ Y2 cosOc+ 2 cos(Qwct+Oc)]
yi(f) = [x(t) + A] x V2 cosOc + [x(t) + A] * cosLwct+Oc)

Since our lowpass filter removes all spectral components with radial frequency @ > w., the
second term in the final expression for y;(¢f) will be removed. This leaves us with (after
lowpass filtering)

v3(t) = [x(t) + A] x Y2 cosO,

And gives the immediate result of

2 2
ys(t) = [x(t) + A] x Yacos Oc

We proceed in a very similar manner for the lower half of our system, except we find that the
first term in the expression for y,(¢) is now removed by the LPF.

w(f) = [x(2) + A] x Y2 sinRw t+6.) — [x(f) + A] * 2 sin@,



va(t) = —[x(f) + A] X Y2 sinB,
2
yo(t) = [x(t) + A] x Vi sin® O,
The rest of the system is quite straightforward, as we have

yi(t) = Ya [x(2) + A]2 X (cosz@c + sinz@g)
ity =Y [x(0) + AT

(1) = "2 [x(t) + 4]

From which x(¢) can be recovered by amplification by a factor of 2 and then using normal
envelope detection.

Problem 2. O&W 8.27

(a) We have x(¢) = coswpt, s0 X(jow) = n(d(w—wy) + d(wtwy)):
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Let z(f) = A + x(¢). Then, Z(jw) = X(jw) + 2xAd(w):
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Let ¢(f) = cos(w.+6,). Thus, C(jw) = m(é w—wp) + e d(w+wy)):
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We have y(t) = z(t)c(?), so Y(jow) = (Yon) Z(jw)*C(jw):
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Since y(¢) is periodic, we can express it in terms of its Fourier series coefficients a;. We know
y(?) is real, so y(f) = [y(¢)|. Thus, by Parseval’s relation,
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The formula for translating the Fourier series coefficients a; of a periodic signal y(¢) into its
Fourier transform Y(jw) is
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where w is the fundamental frequency. Hence, we can find the Fourier series coefficients a;
by taking the area of each impulse and dividing by 2z.

(Sidenote: y(f) is periodic if and only if the frequencies at which the impulses occur in the
Fourier transform are harmonically related. In other words, there must exist a real number wg
and integers k. and kj,such that

We= kca)O
M= kMa)().

This is the condition we need to discretize the frequency axis from the Fourier transform to



the Fourier series representations. However, the problem assumed that y(¢#) was periodic, so
we can convert its Fourier transform to the Fourier series coefficients as done above.)

Thus, the contribution of each sideband impulse to the power is
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The maximum value of |x(?)| is 1, so the modulation index is m = 1/4.

Plugging m = 1/4A = A = 1/minto Eq.1 produces
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power in sidebands
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Substituting in 4 = 1/m into Eq.2 produces

s
12 + 3
The MATLAB code that produced the graphs in parts b and d is:

% part a

% graph P_y as function of A and m

m =[.1:.001:10]; A=1./m; P_y = 1/4 + 1./(2*m."2); close all;
figure; plot(A, P_y); grid on; xlabel(C'A’); ylabel('P_{y});
figure; plot(m, P_y); axis([0, 10, 0, 20]); grid on; xlabel('m’);
ylabel('P_{y});

S =

% part b



% graph efficiency as function of m
eff = (m.~2)./(m.”~2 + 2); figure; plot(m, eff); grid on;
xlabel('modulation index m’); ylabel(efficiency \epsilon’);

Problem 3. (O&W 8.34)
Looking at Figure P8.34 on page 640 of O&W, we’ll name a new variable, z(), that is the
signal between the square-law device and bandpass filter, H(jw).

z(t) = (x(f) + cos(a)ct))2 = x2(f) + 2x(f)cos(wct) + cos*(wct)

Zjow) = (12mX(jo)*X(jo) + [X(j(otwod)) + X(j(o—oc))]
+ 12[0(0t2wc) + d(w—2wc)] + d(w)
Since X(jw) is band limited, X(jw) = 0 |®| > @y, the convolution of X(jw) with itself is also
band limited (X(jw) = X(jw) = 0 || > 2w,,). With that said, we are safe to pull out

x(t)cos(wct) with a bandpass filter given in H(jw). Consider an arbitrary function X(jw)
sketched below:
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and the spectrum of the output of the square-law device, Z(jw), is sketched below. To make
sure that H(jw) doesn’t have any of the signal from X(jw)*X(jw) in the passband, we have
20wy < we—wy. Therefore, we can see the range of values for w;and wj, in the sketch below.

20 < w; <w, — Oy
we + oy < wp < 2w,

Our goal is to have x(f)cos(wcf) come out of the bandpass filter; however, the amplitude is off
by a factor of ' (see figure below), thus 4 has to be equal to 2, since the Fourier transform of
x(t)cos(wct) is:

FT{x(f)cos(wct)} = Y2 [X(j(wtwe)) + X(j(w—wc))]

Problem 4. O&W Problem 8.47



This problem illustrates the detrimental effects of losing phase synchronization between the
transmitter and receiver in a digital system. To gain insight for this problem, let’s look at the
following:

y|n] = x[n]cos[wn + O]
w[n] = y[n]cos[wmn + Od]
= x[n]cos[wn + Oc]cos[wn + Od]

One way to solve this problem is using Euler’s relation (note that you can also do this using
trigonometric identities as well):
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Which simplifies to:
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Notice that by combining these exponential terms, we get:
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Which simplifies to:
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where Aw = wc—wd and A@ = Oc—0Ba. Notice that by doing this algebra first, we can use it for
the rest of the problem.

(a) If we assume Aw =0, then wc= wasand we can simplify w[#n] to the following:
wln] = x[n][ Y2 cos[2wnt(Oc+Oa)] + V2 cos[AO]]

Jjo
From this equation, we can plot the magnitude and phase of W(e ):
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(b) Again, if Aw = 0, then w[n] will be the same as in part (a). If we pick w = w,,, then:
r[n] = x[n]cos[AB]
But, notice that if A® = 772, then since cos(7/2) = 0, then r[n] = 0! This is a very
interesting result! We see that a phase offset between the transmitter and receiver creates
an interferometric effect at the receiver output, with the amplitude of r[n] depending
directly on the phase mismatch A®. Clearly this is not desirable, which leads to the
requirement for a complex receiver to maintain phase coherence in such a system.

(c) Here we have the situation where there is no phase difference between the transmitter and
receiver but there is instead a frequency offset Aw. If A@ = 0, then Oc= @qand w[n] will
simplify to the following:

wln] = x[n][ 2 cos[(wctwa)n + 20c] + Y2 cos[Awn]]

If we let w = wy+ Aw, then:
r[n] = x[n]cos[Awn]

We see the same interesting result here as in part (b), except this time the interferometric
relationship is governed by Awn instead of A®.

Problem 5. O&W Problem 8.48

(a) Since p[n] is periodic, we can use the DT Fourier Series analysis equation to find the
general form for a; and then use the relationship that
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Note: You can also use Tables 5.1 and 5.2 on pp391-392 to find this result. Therefore:
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For N=4,M=1, P(¢") will look like:
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(b) Let wy = A12N. Since M = 1, then:
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Since 2.7/2N = /N < 27N (no aliasing) and Y(é )= 1/27zX(¢ )*P(¢ ), then:
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For N=4, Y(¢") will look like:
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(c) For this problem, we are given:

X () = { #F0 ol < wn

0 |, wu < |w| <

3

Jo . .o
where X(e ) repeats every 2z. In order to make sure that there is no aliasing:
20y < ws=21/N

+
Therefore, wy < 7/N where N € Z . Notice that this calculation does not depend on M.

(d) To get back the original signal, we need to low-pass filter y[n]:
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